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L. TINTRODUCTLON

The use of 1iquid monopropellants in a regeuerative gun involves a
complex process of high~speed bulk injection and combustion of the
propellant. Unfortunately, little is known about the extent of liquid breakup
into drops before combustion takes place. However, droplets are probably
important in bhoth the iguition and propagation of flame to any bulk
material. 1In addition, for sub critical studies the surface tension of
individual droplets provides a well defined liquid-gas interface for the
detailed study of the gas evolution from the liquids and flame zone structure
above the liquid surface. Such studies are difficult with bulk liquids.

Earlier studies of droplet heating and ignition have used a variety of
techniques. Typical cxamples include moving electrically heated furnaces to
anclose suspended dropsl’- at atwmospheric pressure_and freely falling highly
reproducible drops at slightly elevated pressures. Others have extended
combusgtion measurements up to 2600 psia (14 MPa) with direct ignition of
drops™ or drops simulated by liquid on porous spheres.

In our previous studies,” liquid propellant drops have been studied in
hot flows at atwospheric pressure, in a wmanner similar to Law aud co-workers.
This paper reports our efforts to extend these measuremeants to gun ignition
pressures. The goal Ls to measure parameters such as the delay to ignition
and buruning rate as well as studying the details of the ignition and
combustion process .s.

Two techniques have been explored Ln this effort. The first was
pressurization and heating by the combustion of mixtures of gases in a closed
vessel, However, this approach proved to be unsatisfactory because the motion
of the gases in the chamber was both greater and longer lasting than
expected. Although these observations provided preliminary high pressure
experience with single drops, they were inadequate because of poor
reproducibility; details may be found elsewhere.’ The second approach was to
use approximately constant pressure with rapid and controlled heat iuput to
the drop. The use of steady pressurization also increased the safe operation
of the vessel hy a factor of two.

IT. EXPERIMENTAL

For these observatioas, a windowed vessel is pre-pressurized. Then, drop
heating is achieved by local resistance heating of a small volume inside the
vessel, opening an electromagnetic damper (shutter), and convecting the hot
gas over a suspended drop with a small (ca. 3) psi or 0.21 MPa) increase in
total gas pressure. For all of the observations reported here the gas was
nitrogen. Flow velocities have not been measured but are estimatad from the
motion of thermal disturbances to be on the order of 10 ¢m/sec. The Reynolds
numbers are on the order of ten or less. Timing was implemented such that the
heater and recording devices were turned on for an appropriate time hefore the
damper was opened and the gas pressure was increased. This technique 1as been
used here to study Jdrop behavior over the crange from 150 to 1250 psi (1.9 to
R.6 MPa).

The overall schematic diagram of the apparatus is shown in Figure 1. The
windowed vessel for these studies had a cylindrical interior with a 4.4 cm
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diameter; total volume was approximately 230 cmj. Eveuts were imaged through
a 90 mm apertuve 2800 mm focal leugth lens. Typical image avea was a few
millimeters square. Strong back lighting was used. Some studies werve
recorded with a 16 mm high speed camera. However, for the majority of the
work veported here, the imaging was done with a high speed video system (Spin
Physics Model SP2000). 1In addition to the obvious advantages of rapid
turnaround, this system wa: coupled to an 16-bit cowputer based video frame

y grabber. 1lmage processing was used to delinecate the edges of the drops.
These data were then fitted to circles or ellipses by a VAX 11/780 to provide
the potential for accurate drop diameter measurements.

Temperature was measured with a 50 pm chromel~alumel thermocouple mounted
within a few drop diawmeters downstrcam from and out of the wake of the drop.
The resulting signal was recorded with typically 5 msec resolution by a
transient recorder. By vecording temperatuves in Elows without drops,
modifications were made to minimize turbulence and other effects as indicated
by temperature fluctuations, At near atmospheric pressures the tempevature
profiles were almost ideal with a rapid rise and smooth plateau., TIn contrast,
a typical record from a 300 psi (2.1 MPa) run is shown in Figure 2. As can be
seen, the flow degrades at higher pressures.

0 .
° typical dropq k

L1500t lifetime
o
-
é400
w 300
5
= 200

1 g

Y

-y

- 10 heater on
g 0 .
Ot ()
d damper opened

0 2 4 6 8
TIME (SEC)

Figure 2. Typical Tewmperature Record Showing Rapid Rise and Fall
With Damper Action

In order to get reproducible drop sizes, a piezoelectric drop generator
was used to produce drops. One drop was caught on a %0 pm fiber and
transferred to the holder in the vessel, The drop holders were fused silica
fibers with diameters from 50 to about 15 pwm. Diameters below 25 um allowed
even the smaller dvops to be quite spherical.
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The liquid used in all of these observations was the liquid
mounopropellant desigunated LGP 1846, This wmaterial is a stoichiometric mixture
of 61% (by weight) hydroxylammonium nitrate (HAN), 197 triethanolammonium
nicrate (TEAN), and 20% water. Much vecent work has been done to fully
characterize the physical properties of this class of materials.” B®riefly,
the density is 1.43 g/ml at 25°C. The boiling point is estimated at 123.7°C;
its value cannot be easily measuved because of the ouset of exothermic
reactions of the HAN near 120°C, The surface tension is uot substantially
different from that of water. The vapor pressure has been measured up to 65°C
to be less than half that of water, probably due to a well organized and
extensive network of hydrogen bonding in the liquid, The viscosity behavior
is typical of a molten salt. Viscosity values of 5.47 cst (kinematic) and
7.85 cp (dynamic) have been measured at 25°C, The critical point of this
liquid is unknown; it is expected to be outside the range of the present
observations. This material does not have a well defined ignition poiat.
Rather, slow heating under laboratory conditions rvesults in vaporization of
the water (1f in a dry environment), reaction of the HAN near 120°C, and
finally reaction of the TEAN at higher tempervatures. The nature of changes in
this process when heated rapidly and in a combustion environment €filled with
water vapor and other combustion products is a goal of the present study,

IIT. OBSERVATLONS

With this confipuration, the experimental variables were much wmore
controllable and reproducible than in our combustion-heated studies, but a
strong element of randomness remained. The response of the drops to heating
can be placed in three classes. The first mode was to change opacity aftec
perhapsid) msec, and then decvsase in diameter while undergoing some shape
distortions probably related to internal chemistry. The circular drop images
from a typical record of this type were computer fit and the results plotted
in Figure 3, Typical uncertainty from the fitting voutine is less thegn the
plotting symbols used. The zero of time in Figure 3 is the point at which
heat €low can be seen in the video record. These data should not be compared
to a fuel drop in an oxidizing flow. 1In this case there is clearly in-depth
internal chemistry racher than simply heating and vavorization/pyrolysis
followed by gas phase reactions.

The other two modes were velated but probably distinct phenomena. in
both cases the drops remained essentially constant in diameter with an
occasional wisp of vapor trailing off, changed their light trausmission
characteristics at some later point, and then in times oun the ovder of aone
willisecond would vaporize. The distinction in the two modes was that the gas
phase was translucent in some cases, while in others it was opaque, There wis
no attenpt made to study the final event in any more detail because the
earlier changes are a clear indication of internal chemistry which is probably
dominant. 1In all three of these modes of pyrolysis, internal gas bubbles of
varying size were sometiwmes observed,

Under these circumstances, the only drop parameter that was clearly
unambiguous was the lifetime of the drop, defined as the tine from heat flow
At the drop position to drop disappearance. Although there is still
considerable scatter in even this very basic parameter, there are at least
correct treuds in mast cases. Figure 4 shows the lifetimes of a series of 240
to 280 um drops as a fuunction of €iunal flow temperature at 500 psi (3.5 MPa).

e domary— a0y
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Congidering the variability of physical appcarance of the drops, the trewnd is
gurprisingly smooth. The e€fect of the drop holder on this measuremeant, as
the liquid nearer the holder was consumed, was generally not considered
important because of the acceleratiug vate of drop Jisappearance with time.
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Figure 3. Diaweter History of 210 Micromoter Diameter Druop of LGP 1846
in 460°C Flow at 150 psi (1.0 MPFa)
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Figure 5 shows the ohserved lifetimes from several observatiouns as a
function of pressure at final flow tewperatures around 450°C. The amount of
apparent scatter is exacerbated by the multiple drop sizes on one plot.
However, the 240-2%0 um data, acquired as a systematic set, show a good trend
with reasonable scatter except for the point at 505 »si (3.5 MPa). Overall,
these data suggest that there is an upper limit for the lifetime under given
conditions, but that uncontrolled factors are decreasing the values some of
the time.

Alchough wicroexplosions which destroyed the drops were still observed
under conditions where heating was less than maximum and longer times occurred
before drop reaction, they most Erequently were not present for drops in the
40 to 280 um diameter vange in this experiment. However, major gas bubble
formation was unot uncommon, When microexplosions were observed, they differed
in appearance from those observed at ambient pressure in that the entire drop
would appear to be involved in liquid phase reactions. Rather than breaking
the drop into a shower of smaller droplets, at these pressures the drop would
balloon up aad become a cloud of gases. These observations ave well below the
predicted critical pressure of the original material. Thus it is likely that
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the obscrved behavior is due to liquid phase reactions, either from rapid
decomposition and gasification of the drop or from rcactions which result in a
liquid which is above its critical point, Representative behavior is shown in
Figure 6, with the Einal €frames from heating a 185 nm drop in a flow at
approximately 300°C, The drop has alecady swelled slightly in the fiest imape
shown; in the last one only a dack cloud remains. These data were recorded at
1000 frames/sec.

500‘1
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(s 200“‘
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FLOW TEMPERATURE (C)

Fipgure 4, Lifetimes of 240-280 Micrometer Diameter Drops of LGP 1846
as a Function ot Flow Temperatuve at 500 psi (3.4 MPa)

The observed bzhavior was obviously affected by the presence of the
holdar; bubbles large or small were g ievally Formad away from the fiber. In
order to minimize the fiber influence a 390 nm diameter drop was mounted on a
20 um fiber and subjected .o a flow of 480°C at 500 psi (3.4 MPa). This drop
size is near tae limit of drop diameter for holding onto the fiber reliably in
the flowing gas. The drop images were digitized and fit by computar, The
resulting history is showan in Figure 7. in this figure the scatter,
especially at eavly times is wmuch greater than the compubter uncertainty in the
fit. The diameter uncertainty as indicated by the scatter for about the first
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200 wsec is probably due to therwal lensing from the uwoun=laminar flow,
although the imaga appears motionless. If it is assumed that the flow is
finally well established around 220 msec, then the drop diameter shows a
smooth increase, possibly due to drop expansion as it heats up. At 240 msec
the drop turns opuque in the time of one frame (0.5 msec), without any change
in the diameter. This sudden opacity is typical of drop bebhavior under the
conditions of all of the obsarvations veported here. At later time tne drop
balloons symmeteically, but on a somewhat slowar time scale than at
atmospheric' ptessure. During ballooning the drop also moves somewhat on the
fiber. In the next video frame after the last plotted point, only a cloud of
vapor ramafns.
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Figure 5, Lifetimes of LGP 1846 Drops as a Function of Pressure in
400~500°C Flows for Drop Diametevs 240-280 [ 1, 160~-210 [0}, and
80-85 [A] micrometers
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Figure 6, Final Frames from H~ating a 185 pm Drop Shoving Internal
Bubble Formation and Drop Gasification
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Figure 7. Diameter History of a 390 Micrometer Diameter Drop of
LGP 1845 in a 480°C Flow at 500 psi (3.4 MPa)

Iv. DISCUSSION

The preliminary studies discussed above show that there is promise in
this relatively simple apparatus for understanding the behavior of LGP drops
during at least the ignition phase of a regenerative gua cycle. Since
internal gas bubble formation is so common with these drops, understanding the
effect of the fiber on the drop it holds is important. As gas bubbles
generally form away from it, the fiber may be either inert or possibly have
some cooling effect. 1t has been noted here that "dro;.s" with radii near the
size of the fiber diameter behave in a manner not dramatically differeat €rom
lacrger drops as far as following trends with respect to lifetime of the
dvop. For larger drops the intermal gas bubbles coalesce and expand_the drops
more symmetrically, in the mauner previously observed in free drops.

The cause of the scatter in the lifetimes shown in Figure 5 is
undetermined ar present. Fluctuations have been observed in the [low
temperature measurements, itnterpreted as resulting from a less than ideal flow
and the mixing of cooler air. However, it is be noted that five of the six
points plotted in Figure 5 in the 240 to 280 pm range, plotted as squares,
show an extremely smooth trend with pressure. These data were taken in a
sequence where every effort was made to duplicate all conditions except
pressure. The remperature profiles for those drops were similar to all
others. Further studies are requird to determine what the uncontrolled
variables are and to wmeasure their influence on drop hehavior.

15




' It is }ikely that at atmospheric pressure the driving mechanism of
microexplosions is the homonucleation of superheated water. However, the
strong vi§ual evidence, including the vapor trails from the surface, the loss
of transmission through the drops, and the common conversion of the drop into
a cloud of vapor, suggests substantial liquid phase chemistry. It has been
established earlier!? that nitrogen oxides are evolved early in the reactions
of these materials. Thus the evidence of liquid phase ri:actions suggests that
the bubble formation in the drops of LGP 1846 at higher pressure may be driven
by gas generated from chemical reactions. However, the slightly different
behavior at these higher pressures might also be a manifestation of the
presence of the fiber. The time scales of the two experiments is not greatly
different. The portion of the drop near the fiber may be cooler than the rest
of the drop if exothermic reactions are increasing the internal temperature in
addition to the conduction. More data are clearly needed at increased
temperatures and at higher pressures. Observations with freely falling drops
might also previde more reproducibility.

V. FUTURE STUDIES

The work presented here is preliminary but provides the foundation for
advancements in several ways. Near term plans include the addition of
spectroscopic diagnostics to identify the gas phase products which evolve from
the drop, especially during early heating. Spectroscopy of the liquid phase
is also being explored. Higher pressures and slightly higher temperatures are
attainable without major modification of the apparatus. After the ignition
point of these LGPs is reached, studies of the flame structure will be pursued
using visualization and spectroscopic techniques. 1In addition, major
parameters causing scatter in the present studies will be identified. An
effort is also being made to apply acoustic levitation of drops to this
pressurized environment.

VI. CONCLUSION

A high pressure, high temperature experimental facility has been designed
and fabriacted for the study of liquid gun monopropellants. Preliminary
observations show qualitatively correct behavior to variations in pressure,
temperature, and drop size. The advantages of steady pressurization are great
and should be incorporated in any future studies on the individual droplet
level.
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